SQL for Shortest Path Problems 2: A Branch and Bound Approach
I wrote an article a couple of weeks ago, SQL for Shortest Path Problems, in which analytic functions are used to truncate sub-optimal routes in SQL recursions for shortest paths through networks. The problem was posed by an OTN poster, How to use Recursive Subquery Factoring (RSF) to Implement Dijkstra’s shortest path algorithm?, who referenced a very simple test network, and included his own SQL to solve it, which turned out to be quite similar to my own effort. The solutions are guaranteed to be optimal if the algorithm terminates normally, which it does on the small test network, and will on any network unless resources such as memory or time are exhausted owing to problem size.
In that article I referenced two earlier articles that I had written (in June/July 2013) that used analytic functions for other combinatorial problems. The usage in those cases was similar syntactically, but pruned out routes that looked inferior to others at a given iteration, so that the final solutions were not guaranteed to be optimal. The motivation was to to be able to use the SQL for exact solutions on smaller problems and for good, maybe sub-optimal, solutions for problems too large to solve exactly.
I wondered how the SQL in the last article would perform on larger networks, and whether further tuning methods could be found, perhaps based on some form of search truncation, as in the earlier articles. The resulting solution methods can be considered as branch and bound algorithms in SQL.
Updates
- 19 November 2017: I have now put the code and the dataset installation onto GitHub: Brendan’s repo for interesting SQL
- July 2025: See also this 2022 article of mine, Shortest Path Analysis of Large Networks by SQL and PL/SQL
Test Problems
I took two test problems from this site: Stanford Large Network Dataset Collection.
The larger second data set has 428,156 arcs.
Both data sets are of the non-physical type, where there are no differential costs associated with links, and the problem therefore reduces to determining the minimum number of links between a node and other reachable nodes. These non-physical networks tend to be heavily looped, owing to the essentially zero cost of adding a new link. For that reason, I change my problem definition in this article to that of finding a single best path to each reachable node, rather than all, which reduces the solution set size considerably.
It is well known that in non-physical networks, such as social media networks like Linked-In and Facebook, the minimum paths between members tends to remain relatively small as the network size goes up. This will influence the type of algorithm that will be more efficient.
Approximation Methods: Simple truncation
The most obvious approximative approach would be to simple truncate the search after a certain depth (or level). This actually works quite well and gives good results for highly looped networks, where the minimum paths tend to be much shorter than the number of nodes. However there is no guarantee of optimality, and it will be less effective for less looped networks with longer minimum paths.
SQL for SP_RSFONE (simple truncation)
WITH paths (node, path, lev, rn) AS (
SELECT a.dst, To_Char(a.dst), 1, 1
FROM arcs_v a
WHERE a.src = &SRC
UNION ALL
SELECT a.dst,
p.path || ',' || a.dst,
p.lev + 1,
Row_Number () OVER (PARTITION BY a.dst ORDER BY a.dst)
FROM paths p
JOIN arcs_v a
ON a.src = p.node
WHERE p.rn = 1
AND p.lev < &LEVMAX
) SEARCH DEPTH FIRST BY node SET line_no
CYCLE node SET lp TO '*' DEFAULT ' '
SELECT Substr (LPad ('.', 1 + 2 * (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) - 1), '.') || node, 2) node,
Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) lev,
Max (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev)) OVER () maxlev,
Max (lev) intnod,
Max (Max (lev)) OVER () intmax,
Max (path) KEEP (DENSE_RANK FIRST ORDER BY lev) path,
Max (lp) KEEP (DENSE_RANK FIRST ORDER BY lev) lp
FROM paths
GROUP BY node
ORDER BY Max (line_no) KEEP (DENSE_RANK FIRST ORDER BY lev)
Notes on SQL for SP_RSFONE (simple truncation)
- Row_Number gives a single row with value 1 per partitioning node, so that we retain only one row per node for the previous iteration
- The global pruning can be done without an additional subquery by grouping with KEEP, since we only want one optimal row per node
- Note that in the double Max to get maxlev, the inner one is the grouping Max, while the outer is an analytic Max over the whole (grouped) result set
- intnod obtains the maximum intermdiate value of lev for a given node
- intmax obtains the maximum intermdiate value of lev over all nodes
Approximation Methods: Preliminary approximate subquery
A less obvious approach is based on the fact that during the recursion our path pruning can only take into account information available to the current iteration: Other than loops, we can prune out only paths to a given node that are longer than another at the same level. But what if we ran an approximate search in advance, in a prior subquery? Then we could outer-join the subquery by node and prune out any paths for which the subquery has found a better cost. This would potentially reduce the total searching without sacrificing guranteed optimality.
SQL for SP_RSFTWO (preliminary approximate subquery)
WITH paths_0 (node, path, lev, rn) AS (
SELECT a.dst, To_Char(a.dst), 1, 1
FROM arcs_v a
WHERE a.src = &SRC
UNION ALL
SELECT a.dst,
p.path || ',' || a.dst,
p.lev + 1,
Row_Number () OVER (PARTITION BY a.dst ORDER BY a.dst)
FROM paths_0 p
JOIN arcs_v a
ON a.src = p.node
WHERE p.rn = 1
AND p.lev < &LEVMAX
) CYCLE node SET lp TO '*' DEFAULT ' '
, approx_best_paths AS (
SELECT node,
Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) lev
FROM paths_0
GROUP BY node
), paths (node, path, lev, rn) AS (
SELECT a.dst, To_Char(a.dst), 1, 1
FROM arcs_v a
WHERE a.src = &SRC
UNION ALL
SELECT a.dst,
p.path || ',' || a.dst,
p.lev + 1,
Row_Number () OVER (PARTITION BY a.dst ORDER BY a.dst)
FROM paths p
JOIN arcs_v a
ON a.src = p.node
LEFT JOIN approx_best_paths b
ON b.node = a.dst
WHERE p.rn = 1
AND p.lev < Nvl (b.lev, 1000000)
) SEARCH DEPTH FIRST BY node SET line_no CYCLE node SET lp TO '*' DEFAULT ' '
SELECT Substr (LPad ('.', 1 + 2 * (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) - 1), '.') || node, 2) node,
Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) lev,
Max (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev)) OVER () maxlev,
Max (lev) intnod,
Max (Max (lev)) OVER () intmax,
Max (path) KEEP (DENSE_RANK FIRST ORDER BY lev) path,
Max (lp) KEEP (DENSE_RANK FIRST ORDER BY lev) lp
FROM paths
GROUP BY node
ORDER BY Max (line_no) KEEP (DENSE_RANK FIRST ORDER BY lev)
Notes on SQL for SP_RSFTWO (preliminary approximate subquery)
- This query has two recursive subquery factors
- path_0 truncates after an input level is reached
- approx_best_paths gets the global best paths found from the approximate recursion
- paths now has an outer join to path_0 that is used to prune paths that are inferior to any path to the same node found in the prior subquery
- the approximate recursion may not reach all reachable nodes, but the outer join ensures this does not cut off any such nodes incorrectly
Approximation Methods: Preliminary approximate subquery to GTT
We will see later that the second approach works quite well, but that the CBO does not process the preliminary query very efficiently. For this reason writing the query result instead to a temporary table may be more efficient overall. The table can be indexed, and dynamic sampling allows the CBO to estimate the cardinalities more accurately.
SQL for SP_GTTRSF_I and SP_GTTRSF_Q (preliminary approximate query to GTT)
PROMPT SP_GTTRSF_I
INSERT INTO approx_min_levs
WITH paths_0 (node, path, lev, rn) /* SP_GTTRSF_I */ AS (
SELECT a.dst, To_Char(a.dst), 1, 1
FROM arcs_v a
WHERE a.src = &SRC
UNION ALL
SELECT a.dst,
p.path || ',' || a.dst,
p.lev + 1,
Row_Number () OVER (PARTITION BY a.dst ORDER BY a.dst)
FROM paths_0 p
JOIN arcs_v a
ON a.src = p.node
WHERE p.rn = 1
AND p.lev < &LEVMAX
) CYCLE node SET lp TO '*' DEFAULT ' '
SELECT node,
Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) lev
FROM paths_0
GROUP BY node
/
PROMPT SP_GTTRSF_Q
WITH paths (node, path, lev, rn) AS (
SELECT a.dst, To_Char(a.dst), 1, 1
FROM arcs_v a
WHERE a.src = &SRC
UNION ALL
SELECT a.dst,
p.path || ',' || a.dst,
p.lev + 1,
Row_Number () OVER (PARTITION BY a.dst ORDER BY a.dst)
FROM paths p
JOIN arcs_v a
ON a.src = p.node
LEFT JOIN approx_min_levs b
ON b.node = a.dst
WHERE p.rn = 1
AND p.lev < Nvl (b.lev, 1000000)
) SEARCH DEPTH FIRST BY node SET line_no CYCLE node SET lp TO '*' DEFAULT ' '
SELECT Substr (LPad ('.', 1 + 2 * (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) - 1), '.') || node, 2) node,
Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev) lev,
Max (Max (lev) KEEP (DENSE_RANK FIRST ORDER BY lev)) OVER () maxlev,
Max (lev) intnod,
Max (Max (lev)) OVER () intmax,
Max (path) KEEP (DENSE_RANK FIRST ORDER BY lev) path,
Max (lp) KEEP (DENSE_RANK FIRST ORDER BY lev) lp
FROM paths
GROUP BY node
ORDER BY Max (line_no) KEEP (DENSE_RANK FIRST ORDER BY lev)
Notes on SQL for preliminary approximate subquery to GTT
- the SQL above consists of an insert of the approximate subquery into a temporary table, followed by the exact recursive query now referencing the table rather than a subquery factor
Results: Collaboration network of Arxiv General Relativity category
Arxiv GR-QC (General Relativity and Quantum Cosmology) collaboration network is from the e-print arXiv and covers scientific collaborations between authors papers submitted to General Relativity and Quantum Cosmology category. If an author i co-authored a paper with author j, the graph contains a undirected edge from i to j. If the paper is co-authored by k authors this generates a completely connected (sub)graph on k nodes.
The data set comes with the reverse arcs already present, making a total of 28,980.
I took the first node in the first line in the data set file as the initial root node, 3466, and tested the three methods above for values of LEVMAX of 5, 10, 15, 20, 25 and 30. The complete results, including execution plans are in the attached file.
The exact solution has 4,158 nodes reached from the source node 3466, with a maximum level of 11. The listing below gives the output from SP_GTTRSF_Q for LEVMAX=5.
NODE LEV MAXLEV INTNOD INTMAX PATH LP
------------------------------ ---- ------- ------- ------- -------------------------------------------------------------------------------- --
937 1 11 1 45 937
5233 1 11 1 45 5233
8579 1 11 1 45 8579
..4135 2 11 2 45 937,4135
....1860 3 11 3 45 8579,4135,1860
....16498 3 11 3 45 8579,4135,16498
......19442 4 11 4 45 8579,4135,16498,19442
..........9890 6 11 6 45 8579,4135,16498,19442,6264,9890
......22826 4 11 4 45 8579,4135,16498,22826
..........12260 6 11 8 45 8579,4135,16498,22826,6804,12260
..........25491 6 11 8 45 8579,4135,16498,22826,6804,25491
..........25844 6 11 6 45 8579,4135,16498,22826,6804,25844
..............8037 8 11 9 45 8579,4135,16498,22826,13520,122,4825,8037
..............14621 8 11 11 45 8579,4135,16498,22826,13520,122,4825,14621
..............19608 8 11 10 45 8579,4135,16498,22826,13520,122,4825,19608
..............4836 8 11 9 45 8579,4135,16498,22826,13520,122,9593,4836
............4641 7 11 9 45 8579,4135,16498,22826,13520,22224,4641
............17937 7 11 9 45 8579,4135,16498,22826,13520,22224,17937
............21660 7 11 7 45 8579,4135,16498,22826,13520,22224,21660
............22088 7 11 7 45 8579,4135,16498,22826,13520,22224,22088
..........22224 6 11 9 45 8579,4135,16498,22826,13520,22224
........17599 5 11 5 45 8579,4135,16498,22826,17599
..16258 2 11 2 45 8579,16258
....1356 3 11 3 45 8579,16258,1356
....1727 3 11 3 45 8579,16258,1727
......4241 4 11 4 45 8579,16258,1727,4241
........5227 5 11 5 45 8579,16258,1727,4241,5227
........7015 5 11 5 45 8579,16258,1727,4241,7015
........10476 5 11 5 45 8579,16258,1727,4241,10476
..............7854 8 11 10 45 8579,16258,1727,4241,10476,4875,11844,7854
............11844 7 11 10 45 8579,16258,1727,4241,10476,4875,11844
.
. extracted
.
..23429 2 11 2 45 17038,23429
....4781 3 11 3 45 17038,23429,4781
....19697 3 11 3 45 17038,23429,19697
......5519 4 11 4 45 17038,23429,19697,5519
........26167 5 11 5 45 17038,23429,19697,5519,26167
......17818 4 11 4 45 17038,23429,19697,17818
......20260 4 11 4 45 17038,23429,19697,20260
......23809 4 11 4 45 17038,23429,19697,23809
........23219 5 11 5 45 17038,23429,19697,5519,23219
..24578 2 11 2 45 17038,24578
....18297 3 11 3 45 17038,24578,18297
......5402 4 11 4 45 17038,24578,18297,5402
......15947 4 11 4 45 17038,24578,18297,15947
18720 1 11 1 45 18720
19607 1 11 1 45 19607
..3466 2 11 2 45 937,3466
4158 rows selected.
Elapsed: 00:00:09.78
The embedded Excel file below summarises the results with relevant statistics from the query runs and the execution plans.
<width=”100%” src=”https://onedrive.live.com/embed?cid=95EC670EA6AF8ED1&resid=95ec670ea6af8ed1%2179876&authkey=ANmvOWidcOFeg7I&em=2” width=”750” height=”500” frameborder=”0” scrolling=”no”></width=”100%”>
Results summary - SP_RSFONE (simple truncation)
- SP_RSFONE ran in from 3 seconds to 60 seconds, and returned the exact solution from LEVMAX = 15 on
- It continued iterating up to the maximum level of LEVMAX in each case, although all optimal path lengths are found by level 11
Results summary - SP_RSFTWO (preliminary approximate subquery)
This is the execution plan for LEVMAX=5
-----------------------------------------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
-----------------------------------------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 4158 |00:00:27.47 | 2716K| | | |
| 1 | WINDOW SORT | | 1 | 39 | 4158 |00:00:27.47 | 2716K| 372K| 372K| 330K (0)|
| 2 | SORT GROUP BY | | 1 | 39 | 4158 |00:00:27.45 | 2716K| 19M| 6662K| 17M (0)|
| 3 | VIEW | | 1 | 39 | 87755 |00:00:27.27 | 2716K| | | |
| 4 | UNION ALL (RECURSIVE WITH) DEPTH FIRST | | 1 | | 87755 |00:00:27.17 | 2716K| 16M| 1524K| 14M (0)|
|* 5 | INDEX RANGE SCAN | ARCS_CA_GRQC_PK | 1 | 6 | 8 |00:00:00.01 | 2 | | | |
| 6 | WINDOW SORT | | 45 | 33 | 87747 |00:00:21.78 | 1664K| 832K| 511K| 739K (0)|
|* 7 | FILTER | | 45 | | 87747 |00:00:21.27 | 1664K| | | |
|* 8 | HASH JOIN RIGHT OUTER | | 45 | 33 | 110K|00:00:21.38 | 1664K| 1817K| 1817K| 1565K (0)|
| 9 | VIEW | | 45 | 39 | 114K|00:00:21.02 | 1655K| | | |
| 10 | SORT GROUP BY | | 45 | 39 | 114K|00:00:20.96 | 1655K| 337K| 337K| 299K (0)|
| 11 | VIEW | | 45 | 39 | 689K|00:00:20.23 | 1655K| | | |
| 12 | UNION ALL (RECURSIVE WITH) BREADTH FIRST| | 45 | | 689K|00:00:19.32 | 1655K| 903K| 523K| 802K (0)|
|* 13 | INDEX RANGE SCAN | ARCS_CA_GRQC_PK | 45 | 6 | 360 |00:00:00.01 | 50 | | | |
| 14 | WINDOW SORT | | 225 | 33 | 688K|00:00:04.00 | 44865 | 1116K| 557K| 991K (0)|
| 15 | NESTED LOOPS | | 225 | 33 | 688K|00:00:01.27 | 44865 | | | |
| 16 | RECURSIVE WITH PUMP | | 225 | | 67635 |00:00:00.27 | 0 | | | |
|* 17 | INDEX RANGE SCAN | ARCS_CA_GRQC_PK | 67635 | 6 | 688K|00:00:00.57 | 44865 | | | |
| 18 | NESTED LOOPS | | 45 | 33 | 110K|00:00:00.21 | 8594 | | | |
| 19 | RECURSIVE WITH PUMP | | 45 | | 10787 |00:00:00.03 | 0 | | | |
|* 20 | INDEX RANGE SCAN | ARCS_CA_GRQC_PK | 10787 | 6 | 110K|00:00:00.11 | 8594 | | | |
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
5 - access("SRC"=3466)
7 - filter("P"."LEV"<NVL("B"."LEV",1000000))
8 - access("B"."NODE"="DST")
13 - access("SRC"=3466)
17 - access("SRC"="P"."NODE")
20 - access("SRC"="P"."NODE")
- SP_RSFTWO ran in from 27 seconds to 552 seconds, and returned the exact solution in all cases
- From the intmax value (Excel file) we can see that only in the case of LEVMAX=5 did the second recursion iterate beyond the optimum level of 11 (in fact to a level of 45). This would be due the preliminary approximate subquery allowing it to discard sub-optimal paths in the second recursion
- The execution plan above shows that Oracle CBO has chosen not to materialize the first recursive subquery, and essentially reruns it at each of the 45 outer iterations
- A better approach for the CBO to have taken would appear to be to form a hash table in memory (where possible) of the first subquery, and run each iteration of the outer recursion outer-joining to that unchanging hash table; or alternatively, to materialize it and outer-join in any other way deemed appropriate
- I tried hinting the subquery to get CBO to materialise or avoid the repetition of the first subquery, but without success, and so decided using a temproray table to materialise it myself would be a good idea
Results summary - SP_GTTRSF_I and SP_GTTRSF_Q (preliminary approximate query to GTT)
- SP_GTTRSF_I and SP_GTTRSF_Q ran in from 5 seconds to 54 seconds combined
- LEVMAX=10 gave slight the better result here: Evidently, the extra work in the insert compared with LEVMAX=5 was over-compensated by the benefit of a better approximate solution
- Once LEVMAX is sufficiently large to give a good approximate solution it is most efficient not to increase it further
- This method is almost as efficient as simply truncating at a given level, but guarantees optimality
Network analysis
I have my own network analysis program, implemented as a PL/SQL pipelined function. I thought this might be useful to help validate the results. The function returns all distinct subnetworks and is called three times to give different levels of detail. It runs against a view links_v that must be created for the data source containing the network links. Here is the output:
Network Detail
links_v based on net_CA_GrQc
View dropped.
View created.
COUNT(*)
----------
14484
Network detail
Network #Links #Nodes Lev Node Link
---------- ------- ------- ------ ---------- ----------
1000 13422 4158 0 1000 ROOT
1 > 1149 770
2 > 12016 4681
3 < 1000* 778
3 > 18271 7628
4 < 13702 3675
.
. Extracted
.
11 < 5400 14039
8 < 5241 5959
7 > 18145 8551
8 > 21799 13889
9 < 11557* 8553
6 > 18271* 14193
6 > 19978 14194
7 < 13702* 3676
7 < 18271* 3671
4 < 18152 12071
2 > 16234 4682
3 > 18373 4686
4 < 1149* 4684
4 > 19871 4687
5 > 25526 5590
6 < 18373* 4688
2 > 17251 4683
2 > 20557 4685
2 > 4189 4679
3 > 5829 13222
1 > 20667 785
10002 1 2 0 10002 ROOT
1 < 7468 8487
10056 11 6 0 10056 ROOT
1 < 2754 13119
2 > 5511 13116
3 > 10056* 13122
3 > 7265 13120
4 > 10056* 13115
4 < 2754* 13117
4 > 7479 13114
5 > 10056* 12036
5 > 13390 12037
5 < 2754* 13118
5 < 5511* 13121
1010 1 2 0 1010 ROOT
1 > 2749 13221
10115 2 3 0 10115 ROOT
1 > 10134 50
1 > 23916 51
1013 2 3 0 1013 ROOT
1 > 19011 9224
2 < 2123 12933
10133 1 2 0 10133 ROOT
1 > 18218 6369
10148 1 2 0 10148 ROOT
1 > 10847 7955
10154 5 4 0 10154 ROOT
1 > 16830 13630
2 < 11410 14133
3 < 9224 12381
4 > 10154* 12380
4 > 16830* 12382
10163 24 8 0 10163 ROOT
1 > 12551 7434
2 < 1281 7440
3 > 10163* 7439
3 > 18621 7441
4 < 10163* 7435
4 < 12551* 5987
4 < 17588 5984
5 < 12551* 5986
5 > 24207 5985
6 < 10163* 7436
6 < 12551* 5988
6 < 1281* 7442
6 < 18621* 5982
6 > 25287 5981
7 < 10163* 7437
7 < 12551* 5989
7 < 1281* 7443
7 < 18621* 5983
7 < 3653 7448
8 > 10163* 7444
8 > 12551* 7445
8 < 1281* 7438
8 > 18621* 7446
8 > 24207* 7447
10178 3 3 0 10178 ROOT
1 > 24133 10756
2 < 3744 14126
3 > 10178* 14125
10180 3 3 0 10180 ROOT
1 > 17587 13060
2 < 2334 13059
3 > 10180* 13058
10252 3 3 0 10252 ROOT
1 > 16820 6964
2 < 9630 6963
3 > 10252* 6962
10317 2 3 0 10317 ROOT
1 > 11816 4265
1 < 2259 4264
10338 14 7 0 10338 ROOT
1 > 12458 5220
2 > 12460 8958
3 < 10338* 5221
3 > 16651 13302
4 < 10338* 5223
4 < 12458* 8959
4 > 19378 13976
5 < 10338* 5224
5 < 12458* 8960
5 < 12460* 13303
5 < 7523 12926
6 > 10338* 12924
6 > 12458* 12925
1 > 14844 5222
10341 6 4 0 10341 ROOT
1 < 1292 10693
2 > 14840 10694
3 < 10341* 10695
3 < 6648 10697
4 > 10341* 10696
4 < 1292* 10692
10355 5 6 0 10355 ROOT
1 < 2054 3240
2 > 13741 3241
2 < 1552 13484
2 > 8719 3238
2 > 9760 3239
10356 1 2 0 10356 ROOT
1 > 19062 7274
10382 1 2 0 10382 ROOT
1 > 25482 12047
10407 1 2 0 10407 ROOT
1 < 6701 13278
10432 2 3 0 10432 ROOT
1 > 16891 7463
1 < 5774 13628
10433 1 2 0 10433 ROOT
1 < 2593 5143
1050 1 2 0 1050 ROOT
1 > 17120 4284
1051 3 3 0 1051 ROOT
1 > 25664 13897
2 < 4245 13898
3 < 1051* 13896
10513 2 3 0 10513 ROOT
1 > 25059 9437
1 > 25595 9438
10517 1 2 0 10517 ROOT
1 < 5119 9154
10522 1 2 0 10522 ROOT
1 > 10561 11775
10559 1 2 0 10559 ROOT
1 > 18245 8169
10564 6 5 0 10564 ROOT
1 > 15187 6266
2 < 8970 9824
3 > 10564* 9823
1 < 2984 6265
2 > 8731 6264
3 > 10564* 6294
10602 1 2 0 10602 ROOT
1 > 20805 13140
10637 4 4 0 10637 ROOT
1 > 21340 4094
2 < 8428 4093
3 > 10637* 4091
3 > 18603 4092
10638 1 2 0 10638 ROOT
1 < 8717 12974
10672 6 4 0 10672 ROOT
1 > 12512 11111
2 < 4630 11110
3 > 10672* 11109
3 > 9921 11108
4 > 10672* 13681
4 > 12512* 13682
10676 1 2 0 10676 ROOT
1 > 24961 1798
10677 29 14 0 10677 ROOT
1 > 17015 9130
2 > 20560 7465
3 < 309 7253
4 > 10677* 7250
4 > 17015* 7251
4 > 17453 7252
5 < 11030 10700
6 > 23946 10701
7 < 17453* 4282
7 > 25611 10703
8 < 11030* 10702
8 < 17453* 4283
8 < 6012 8987
9 > 11030* 8984
9 > 17453* 8985
9 > 23946* 8986
9 > 9591 8983
10 > 10677* 4275
10 > 11030* 4276
10 > 13704 4277
10 > 17015* 4278
10 > 17453* 4279
10 < 2136 4273
11 > 17453* 4274
10 < 2186 14089
10 > 23946* 4280
10 > 25611* 4281
10 < 309* 7249
2 > 21314 7466
10679 4 4 0 10679 ROOT
1 < 115 9941
2 > 5268 9940
3 > 10679* 9939
1 < 8671 9015
10682 4 4 0 10682 ROOT
1 < 2506 6022
2 > 9962 6021
3 > 10682* 5990
3 > 22428 5991
10792 11 7 0 10792 ROOT
1 > 15695 9866
2 > 20379 9647
2 > 21309 9648
3 < 20422 9661
4 < 2222 9642
5 > 10792* 9640
5 > 15695* 9641
5 > 21309* 9643
5 < 2215 9644
6 > 15695* 9645
6 > 21309* 9646
10818 3 3 0 10818 ROOT
1 > 11016 11965
2 > 25596 11967
3 < 10818* 11966
10872 3 3 0 10872 ROOT
1 > 24250 6959
2 < 2666 6961
3 > 10872* 6960
10884 10 7 0 10884 ROOT
1 > 16353 12670
2 < 4958 12669
3 > 10884* 12668
3 > 9606 12667
4 > 10884* 9663
4 > 12122 9664
5 < 5973 13438
6 > 9606* 13437
4 > 16353* 9665
4 < 2247 9662
10897 1 2 0 10897 ROOT
1 < 5548 7565
10904 7 7 0 10904 ROOT
1 > 12707 9216
2 < 5156 4083
3 > 10904* 4082
3 > 14282 4084
4 < 11035 4183
3 > 17933 4085
3 > 7483 4081
10906 5 6 0 10906 ROOT
1 < 1289 10560
2 > 1560 10558
2 > 4365 10559
1 < 8530 5023
2 > 21144 5024
1092 2 3 0 1092 ROOT
1 > 23226 5795
1 > 3196 5794
10936 3 4 0 10936 ROOT
1 > 19509 10723
1 > 19510 10724
1 > 23687 10725
11009 12 8 0 11009 ROOT
1 > 20157 7971
2 > 23471 7975
3 < 11009* 7974
1 > 21344 7972
2 < 11721 9753
3 > 12151 9751
4 > 15221 9756
5 < 11721* 9752
5 > 21344* 9754
4 > 21344* 9757
2 > 22990 9755
3 < 11009* 7973
11028 6 4 0 11028 ROOT
1 > 21171 9834
2 > 22730 9836
3 < 11028* 9835
3 < 5211 9833
4 > 11028* 9831
4 > 21171* 9832
11054 3 3 0 11054 ROOT
1 < 8395 14002
2 > 8725 14001
3 > 11054* 14003
1107 1 2 0 1107 ROOT
1 > 6973 6133
11120 3 4 0 11120 ROOT
1 > 16340 13294
1 > 17851 13295
1 > 20233 13296
11196 3 4 0 11196 ROOT
1 < 13 9182
2 > 19170 9183
2 > 7596 9181
11197 3 3 0 11197 ROOT
1 < 844 6408
2 > 890 6407
3 > 11197* 6409
11215 1 2 0 11215 ROOT
1 > 23156 13072
11216 2 3 0 11216 ROOT
1 > 19598 5564
2 < 13815 5565
11279 5 5 0 11279 ROOT
1 > 17750 5108
2 > 22976 5109
2 > 25609 5110
2 < 9832 6048
3 > 11279* 6047
11280 1 2 0 11280 ROOT
1 < 831 11119
11285 3 3 0 11285 ROOT
1 > 12193 7864
2 < 9618 7863
3 > 11285* 7862
11411 1 2 0 11411 ROOT
1 > 24242 13714
11418 5 5 0 11418 ROOT
1 < 161 5233
2 > 19583 5234
3 < 97 12273
4 > 161* 12272
2 > 3105 5232
11427 4 4 0 11427 ROOT
1 > 20414 6376
2 < 14170 7561
3 < 7632 6737
4 > 20414* 6738
11459 1 2 0 11459 ROOT
1 < 6706 4089
11462 1 2 0 11462 ROOT
1 > 17141 5708
11465 3 3 0 11465 ROOT
1 > 11577 12723
2 < 3239 5601
3 > 11465* 5600
11467 1 2 0 11467 ROOT
1 > 19575 13141
11539 7 5 0 11539 ROOT
1 > 15227 13103
2 > 16655 9932
3 < 11539* 13104
3 < 782 9931
4 > 11539* 9929
4 > 15227* 9930
2 > 18151 9933
1154 6 5 0 1154 ROOT
1 > 12017 4312
2 > 12930 4314
3 < 1154* 4313
3 > 17591 4315
4 < 8704 7088
5 > 12930* 7087
11561 6 6 0 11561 ROOT
1 < 9579 11992
2 > 16932 11993
3 > 19451 11991
4 < 9579* 11994
2 > 22381 11995
2 < 6534 12067
11566 3 3 0 11566 ROOT
1 > 11808 3143
2 > 18560 3145
3 < 11566* 3144
11579 1 2 0 11579 ROOT
1 > 15073 12917
11593 10 10 0 11593 ROOT
1 > 18415 9430
2 < 16818 8830
2 > 23648 3437
2 < 4633 3436
2 < 7194 886
3 > 15322 885
3 > 20960 887
4 < 6355 883
5 > 7194* 882
3 > 7542 884
11616 12 9 0 11616 ROOT
1 > 14149 5047
2 > 14662 5042
3 < 11616* 5048
2 > 16648 5043
2 > 19560 5044
3 > 23530 9159
4 < 14149* 5046
4 < 3750 11990
5 > 14149* 11988
5 > 19560* 11989
2 > 22199 5045
2 < 8147 13240
11622 5 5 0 11622 ROOT
1 < 3852 12250
2 > 7877 12249
3 > 11622* 6262
3 < 1378 6261
3 > 15422 6263
11623 1 2 0 11623 ROOT
1 > 23621 9950
11641 1 2 0 11641 ROOT
1 > 24462 11178
11642 1 2 0 11642 ROOT
1 > 25230 13233
11662 10 5 0 11662 ROOT
1 > 14094 9983
2 > 19014 9985
3 < 11662* 9984
3 < 5960 9979
4 > 11662* 9977
4 > 14094* 9978
4 > 8705 9976
5 > 11662* 9980
5 > 14094* 9981
5 > 19014* 9982
11718 1 2 0 11718 ROOT
1 > 20766 14024
11823 19 9 0 11823 ROOT
1 > 13628 13948
2 > 15246 13945
3 > 20332 13377
4 < 13628* 13946
4 < 6350 9193
5 > 11823* 9189
5 > 13628* 9190
5 > 15246* 9191
5 > 16014 9192
5 > 23710 9194
6 < 11823* 13949
6 < 13628* 13947
6 < 8372 13944
7 > 11823* 13940
7 > 13628* 13941
7 > 15246* 13942
7 > 20332* 13943
7 < 6350* 9188
5 < 4495 9195
11828 1 2 0 11828 ROOT
1 < 7807 7330
11842 5 5 0 11842 ROOT
1 < 1656 5766
2 > 21531 5767
3 < 5828 5768
4 < 1656* 5765
2 > 4040 5764
1187 1 2 0 1187 ROOT
1 > 6290 9841
11879 7 6 0 11879 ROOT
1 > 26092 11947
2 < 21187 10770
3 < 4051 7891
4 > 21313 7892
5 < 21310 13661
5 > 26092* 7894
4 > 26092* 7893
11893 3 3 0 11893 ROOT
1 > 25667 13467
2 < 8891 13036
3 > 11893* 13035
11911 1 2 0 11911 ROOT
1 < 9039 12102
1194 1 2 0 1194 ROOT
1 > 21858 1756
11965 3 4 0 11965 ROOT
1 < 1556 6619
2 > 14096 6620
2 > 23154 6621
11969 3 3 0 11969 ROOT
1 > 18996 10664
2 < 1967 10666
3 > 11969* 10665
11971 1 2 0 11971 ROOT
1 > 25211 11733
11991 1 2 0 11991 ROOT
1 < 3186 12664
12034 15 6 0 12034 ROOT
1 > 17935 14102
2 < 2116 14098
3 > 12034* 14097
3 > 9189 14094
4 > 12034* 14092
4 > 17935* 14093
4 > 9765 14090
5 > 12034* 14100
5 > 17935* 14101
5 < 2116* 14095
5 > 9774 14099
6 > 12034* 14103
6 > 17935* 14104
6 < 2116* 14096
6 < 9189* 14091
12041 1 2 0 12041 ROOT
1 > 14384 8493
12042 20 12 0 12042 ROOT
1 < 5738 3826
2 > 17252 3827
3 > 18142 12724
4 < 5738* 3828
4 < 6538 10717
5 > 16040 10715
5 > 17252* 10716
5 < 5478 13900
6 > 5738* 13899
6 > 8349 13901
7 < 1549 9651
8 > 22766 9652
9 > 23168 9655
10 < 1549* 9653
10 < 8349* 9650
9 < 8349* 9649
8 > 24732 9654
7 < 5738* 3825
7 < 6538* 10714
5 < 5738* 3824
12046 7 8 0 12046 ROOT
1 > 25957 7833
2 < 17724 4986
3 > 25958 4987
2 < 19126 9486
3 < 14135 13923
2 < 8263 3572
3 > 17882 3571
12050 1 2 0 12050 ROOT
1 < 5364 13463
12113 4 4 0 12113 ROOT
1 > 16886 12069
2 < 142 12755
3 > 18626 12756
4 < 16886* 12070
12161 1 2 0 12161 ROOT
1 > 19162 4316
12192 3 3 0 12192 ROOT
1 < 5839 9611
2 > 7026 9610
3 > 12192* 9612
12213 21 7 0 12213 ROOT
1 > 13558 13457
2 > 21710 12987
3 < 12213* 13458
3 > 22318 13461
4 < 12213* 13459
4 < 13558* 12988
4 > 24888 13456
5 < 12213* 13460
5 < 13558* 12989
5 < 21710* 13462
5 < 8669 12995
6 > 12213* 12991
6 > 13558* 12992
6 > 21710* 12993
6 > 22318* 12994
6 > 9038 12990
Network #Links #Nodes Lev Node Link
---------- ------- ------- ------ ---------- ----------
12213 21 7 7 > 12213* 13451
7 > 13558* 13452
7 > 21710* 13453
7 > 22318* 13454
7 > 24888* 13455
12248 1 2 0 12248 ROOT
1 < 98 14149
12252 2 3 0 12252 ROOT
1 > 22404 10336
2 < 9026 13358
12256 2 3 0 12256 ROOT
1 > 17237 6040
1 < 5081 6039
12290 2 3 0 12290 ROOT
1 > 17307 8012
1 > 20031 8013
12307 3 3 0 12307 ROOT
1 > 14175 12694
2 > 22980 12693
3 < 12307* 12695
12320 3 3 0 12320 ROOT
1 > 12321 6226
2 > 19222 6228
3 < 12320* 6227
12338 3 3 0 12338 ROOT
1 > 15800 13147
2 < 1878 13146
3 > 12338* 13145
12387 7 6 0 12387 ROOT
1 > 19520 7612
2 > 23084 7614
3 < 12387* 7613
3 < 19931 14057
3 > 23553 7616
3 > 23554 7617
4 < 19520* 7615
12414 13 8 0 12414 ROOT
1 > 14431 5783
2 > 24439 14022
3 < 12414* 5785
3 < 18562 5786
4 < 12414* 5784
4 < 3102 5781
5 > 12414* 5780
5 > 24439* 5782
3 < 20537 13299
4 > 20543 13298
5 > 21339 10744
6 > 24439* 10746
5 > 24439* 10745
12473 1 2 0 12473 ROOT
1 < 9831 13760
12504 1 2 0 12504 ROOT
1 < 9053 9044
12554 1 2 0 12554 ROOT
1 < 7636 11747
12616 3 3 0 12616 ROOT
1 > 16266 4164
2 < 4485 4166
3 > 12616* 4165
12617 2 3 0 12617 ROOT
1 > 17388 7631
2 < 6037 8024
12676 2 3 0 12676 ROOT
1 > 14302 9722
2 < 5432 13653
12689 6 4 0 12689 ROOT
1 > 17560 4479
2 > 21697 4477
3 < 12689* 4480
3 > 25116 4476
4 < 12689* 4481
4 < 17560* 4478
12703 2 3 0 12703 ROOT
1 < 1669 4747
1 < 5260 6438
12704 2 3 0 12704 ROOT
1 < 7861 7495
2 < 2355 7496
12751 1 2 0 12751 ROOT
1 < 6307 11094
12798 2 3 0 12798 ROOT
1 > 19507 6123
2 < 3199 7089
12801 4 4 0 12801 ROOT
1 > 15641 13864
2 > 19548 9870
3 < 12801* 13865
2 < 5466 9871
12863 1 2 0 12863 ROOT
1 > 18390 11997
12940 2 3 0 12940 ROOT
1 < 787 9633
2 > 20883 9634
13012 3 3 0 13012 ROOT
1 < 1983 12737
2 > 20943 12738
3 < 13012* 12739
13022 1 2 0 13022 ROOT
1 < 8077 8653
13031 4 4 0 13031 ROOT
1 > 13334 12391
2 < 8738 12997
3 > 13031* 12996
1 > 13620 12392
13167 3 3 0 13167 ROOT
1 > 15485 13919
2 < 800 7678
3 > 13167* 7677
13202 3 4 0 13202 ROOT
1 > 16703 8062
2 > 22253 3823
3 < 4128 5098
13325 14 8 0 13325 ROOT
1 > 14502 9507
2 > 15899 9510
3 < 13325* 9508
2 > 20926 9511
3 < 13325* 9509
3 < 6735 9505
4 > 13325* 9503
4 > 14502* 9504
4 > 23167 9506
5 < 3388 13311
6 > 3818 13309
7 > 23167* 9127
7 > 6735* 9126
6 > 6735* 13310
13357 4 4 0 13357 ROOT
1 > 25115 9305
2 < 8739 9304
3 > 13357* 9303
1 > 25852 9306
13413 1 2 0 13413 ROOT
1 < 9211 13312
13415 3 3 0 13415 ROOT
1 > 15386 12935
2 < 7585 12980
3 > 13415* 12979
1344 1 2 0 1344 ROOT
1 > 18126 10351
1346 1 2 0 1346 ROOT
1 > 6448 4271
13485 2 3 0 13485 ROOT
1 > 21530 5692
2 < 5059 1701
13486 3 3 0 13486 ROOT
1 > 18688 11102
2 < 4259 11104
3 > 13486* 11103
13621 1 2 0 13621 ROOT
1 > 25388 560
13675 1 2 0 13675 ROOT
1 < 4186 4163
13677 3 3 0 13677 ROOT
1 > 18288 9861
2 > 23206 9863
3 < 13677* 9862
13717 1 2 0 13717 ROOT
1 < 8558 12265
1376 1 2 0 1376 ROOT
1 > 4267 10556
13802 6 4 0 13802 ROOT
1 > 16823 14183
2 > 19553 13907
3 < 13802* 14184
3 < 5571 14182
4 > 13802* 14180
4 > 16823* 14181
1383 11 6 0 1383 ROOT
1 > 3377 13218
2 < 1660 11777
3 > 23068 11778
4 > 25631 11781
5 < 1660* 11779
5 > 25678 11776
6 < 1660* 11780
6 < 23068* 11782
6 < 3377* 11785
5 < 3377* 11784
4 < 3377* 11783
13932 4 4 0 13932 ROOT
1 < 6075 1618
2 > 14499 1619
3 > 20345 1621
4 < 6075* 1620
14 1 2 0 14 ROOT
1 > 14171 13498
14130 1 2 0 14130 ROOT
1 < 3599 9719
14131 1 2 0 14131 ROOT
1 < 372 12066
14132 1 2 0 14132 ROOT
1 > 15154 11120
14159 4 4 0 14159 ROOT
1 > 24852 6980
2 < 5144 10685
3 > 14159* 10684
2 < 8869 8832
14182 1 2 0 14182 ROOT
1 > 17537 12666
14338 1 2 0 14338 ROOT
1 > 22729 11180
14339 2 3 0 14339 ROOT
1 > 18608 13026
2 > 22816 13025
14353 6 5 0 14353 ROOT
1 > 14886 4074
2 < 2043 9914
3 > 6315 9913
4 > 14886* 5819
2 < 2455 4073
3 > 14353* 4072
14358 1 2 0 14358 ROOT
1 < 5697 12262
14543 4 4 0 14543 ROOT
1 > 21221 7497
2 > 25130 7499
3 < 14543* 7498
3 < 7958 6801
14560 3 3 0 14560 ROOT
1 > 24251 3804
2 < 2656 3803
3 > 14560* 3802
14763 1 2 0 14763 ROOT
1 < 4432 14004
14770 9 7 0 14770 ROOT
1 > 21713 11906
2 > 25470 12922
3 < 14770* 11908
1 > 23461 11907
2 < 3297 11746
3 > 17936 11745
3 > 5667 11744
4 > 14770* 9772
4 > 23461* 9773
14771 1 2 0 14771 ROOT
1 > 24127 4463
14842 2 3 0 14842 ROOT
1 > 24575 9988
2 < 8255 13350
14845 3 3 0 14845 ROOT
1 > 19521 13500
2 < 5232 13502
3 > 14845* 13501
14868 3 3 0 14868 ROOT
1 > 16226 9830
2 < 2201 9829
3 > 14868* 9828
14894 2 3 0 14894 ROOT
1 < 1670 9778
1 > 22927 9777
1490 1 2 0 1490 ROOT
1 > 20813 3849
14990 1 2 0 14990 ROOT
1 > 25975 13930
15181 1 2 0 15181 ROOT
1 < 2331 8932
15182 10 5 0 15182 ROOT
1 > 16728 12023
2 > 22319 12026
3 < 15182* 12024
3 > 23424 12028
4 < 15182* 12025
4 < 16728* 12027
4 < 8153 12022
5 > 15182* 12019
5 > 16728* 12020
5 > 22319* 12021
15188 1 2 0 15188 ROOT
1 < 6354 5992
15208 1 2 0 15208 ROOT
1 > 23759 9082
15218 1 2 0 15218 ROOT
1 > 17585 8869
15248 5 5 0 15248 ROOT
1 > 17595 13446
2 > 19018 8520
3 < 17076 4176
2 < 8443 13445
3 > 15248* 13444
15249 1 2 0 15249 ROOT
1 > 15624 3148
15259 2 3 0 15259 ROOT
1 > 25136 13139
2 < 22000 10613
15358 3 3 0 15358 ROOT
1 > 18036 12671
2 > 18338 12673
3 < 15358* 12672
15374 1 2 0 15374 ROOT
1 > 15553 14037
15387 1 2 0 15387 ROOT
1 > 15388 4994
15396 7 5 0 15396 ROOT
1 > 18238 11870
2 > 26180 11865
3 < 15396* 11871
3 < 4777 11869
4 > 15396* 11866
4 > 18238* 11867
4 > 19064 11868
15401 1 2 0 15401 ROOT
1 < 4196 13893
15415 3 4 0 15415 ROOT
1 > 24640 2865
2 < 24152 5206
2 < 4685 11740
15423 1 2 0 15423 ROOT
1 > 18144 9875
1551 2 3 0 1551 ROOT
1 > 8058 9269
2 < 2328 13800
15572 1 2 0 15572 ROOT
1 < 7356 7467
15583 4 4 0 15583 ROOT
1 > 17785 12058
2 > 18628 10047
2 > 24272 10048
3 < 15583* 12059
15609 1 2 0 15609 ROOT
1 > 21809 8705
15642 3 3 0 15642 ROOT
1 > 16783 14117
2 > 17563 10323
3 < 15642* 14118
15668 6 4 0 15668 ROOT
1 > 17293 10740
2 > 25614 10738
3 < 15668* 10741
3 > 26006 10743
4 < 15668* 10742
4 < 17293* 10739
15681 2 3 0 15681 ROOT
1 > 20793 8829
1 < 7482 8828
15688 1 2 0 15688 ROOT
1 > 22692 9551
15706 2 3 0 15706 ROOT
1 > 20776 6419
1 < 374 12104
15712 1 2 0 15712 ROOT
1 > 19596 10679
15824 1 2 0 15824 ROOT
1 > 22283 4049
15847 3 3 0 15847 ROOT
1 < 348 10620
2 > 5660 10619
3 > 15847* 10621
1589 1 2 0 1589 ROOT
1 > 7603 9073
15962 1 2 0 15962 ROOT
1 > 25447 13908
16015 1 2 0 16015 ROOT
1 > 22938 13260
16109 9 6 0 16109 ROOT
1 > 21808 6661
2 < 2784 6660
3 > 16109* 6659
3 > 5425 6658
4 > 16109* 2533
4 > 16224 2534
5 > 24161 2537
6 < 5425* 2536
4 > 21808* 2535
16124 3 3 0 16124 ROOT
1 > 20807 8756
2 > 24334 8758
3 < 16124* 8757
16129 3 3 0 16129 ROOT
1 < 2298 12973
2 < 74 12971
3 > 16129* 12972
1621 3 3 0 1621 ROOT
1 > 6576 11063
2 > 7109 11062
3 < 1621* 11064
16281 1 2 0 16281 ROOT
1 > 24728 4740
16312 1 2 0 16312 ROOT
1 > 16314 12399
16338 1 2 0 16338 ROOT
1 > 21390 9527
16358 3 3 0 16358 ROOT
1 < 822 11830
2 > 9518 11829
3 > 16358* 11831
16470 1 2 0 16470 ROOT
1 > 17822 1078
16484 1 2 0 16484 ROOT
1 < 8302 290
16523 2 3 0 16523 ROOT
1 < 4110 9867
2 > 17696 9868
16609 2 3 0 16609 ROOT
1 < 6170 12054
2 > 8881 12053
16620 8 6 0 16620 ROOT
1 < 1908 8034
2 > 16621 8035
3 < 2611 6945
4 > 16620* 6944
4 < 1908* 8033
4 < 376 6942
5 > 16620* 6943
2 > 17173 8036
16622 1 2 0 16622 ROOT
1 > 18454 12390
16643 1 2 0 16643 ROOT
1 > 20035 12052
16802 3 3 0 16802 ROOT
1 > 23757 9016
2 < 830 9018
3 > 16802* 9017
16892 3 3 0 16892 ROOT
1 > 19572 13495
2 < 3062 8588
3 > 16892* 8587
16922 1 2 0 16922 ROOT
1 > 20925 12923
1695 1 2 0 1695 ROOT
1 > 19380 7838
16957 2 3 0 16957 ROOT
1 < 3362 9779
2 < 3347 9780
16971 3 3 0 16971 ROOT
1 > 20170 13022
2 < 5228 13024
3 > 16971* 13023
17178 8 7 0 17178 ROOT
1 > 21024 9774
2 < 19712 8585
2 > 23215 8586
3 < 17178* 9775
2 < 8071 12245
1 < 2329 13300
2 > 24846 13301
3 < 17178* 9776
17179 3 3 0 17179 ROOT
1 > 24816 5256
2 < 9871 5255
3 > 17179* 5254
17276 3 3 0 17276 ROOT
1 > 18383 4020
2 < 9994 4019
3 > 17276* 4018
17280 7 5 0 17280 ROOT
1 > 19956 7470
2 < 2785 13505
3 > 17280* 13504
3 > 3682 13503
4 > 17280* 13506
4 > 19956* 13507
1 > 24597 7471
17291 3 3 0 17291 ROOT
1 < 4017 4627
2 > 7888 4626
3 > 17291* 4628
17346 3 3 0 17346 ROOT
1 > 20319 9991
2 < 9149 9916
3 > 17346* 9915
17461 3 3 0 17461 ROOT
1 < 188 7261
2 > 22920 7262
3 < 17461* 8965
17468 3 3 0 17468 ROOT
1 < 3200 9325
2 > 4264 9324
3 > 17468* 9326
17470 1 2 0 17470 ROOT
1 > 19221 12233
17471 1 2 0 17471 ROOT
1 < 3989 10774
17503 1 2 0 17503 ROOT
1 < 3748 13137
17690 1 2 0 17690 ROOT
1 < 5814 5763
17782 10 5 0 17782 ROOT
1 > 18231 10034
2 < 1989 10031
3 > 17782* 10030
3 > 4106 10028
4 > 17782* 13352
4 > 18231* 13353
4 > 7515 13351
5 > 17782* 10032
5 > 18231* 10033
5 < 1989* 10029
17865 3 4 0 17865 ROOT
1 > 24159 9131
2 < 4276 10554
2 < 717 9713
17951 1 2 0 17951 ROOT
1 < 833 8539
1798 3 3 0 1798 ROOT
1 > 4828 11136
2 > 5404 11138
3 < 1798* 11137
17992 1 2 0 17992 ROOT
1 < 4181 14179
18003 2 3 0 18003 ROOT
1 < 5545 8014
1 < 6709 3077
18034 18 8 0 18034 ROOT
1 < 1981 9113
2 > 19879 9114
3 < 18034* 9120
3 < 5468 9119
4 > 18034* 9118
4 < 1981* 9109
4 > 5668 9116
5 > 18034* 11977
5 < 1981* 9110
5 > 19879* 11978
5 > 8187 11976
6 > 18034* 9514
6 < 1981* 9112
6 > 19879* 9515
6 < 5468* 9117
2 > 25444 9115
3 < 6908 11813
4 < 1981* 9111
18098 1 2 0 18098 ROOT
1 < 3100 7819
18156 1 2 0 18156 ROOT
1 < 5387 12715
18171 2 3 0 18171 ROOT
1 < 5413 1730
1 < 85 7675
18183 1 2 0 18183 ROOT
1 < 4278 11748
18194 1 2 0 18194 ROOT
1 > 21949 12248
1821 3 3 0 1821 ROOT
1 < 187 6296
2 > 21386 6297
3 < 1821* 6298
18279 3 3 0 18279 ROOT
1 < 6389 8481
2 > 6914 8480
3 > 18279* 8482
1836 1 2 0 1836 ROOT
1 > 8400 12006
18388 1 2 0 18388 ROOT
1 > 20654 13869
18417 1 2 0 18417 ROOT
1 > 19892 13920
18544 3 3 0 18544 ROOT
1 > 21596 10321
2 < 2332 10320
3 > 18544* 10319
18581 1 2 0 18581 ROOT
1 < 2938 9797
18596 3 3 0 18596 ROOT
1 > 23771 12385
2 < 4144 12384
3 > 18596* 12383
18669 4 4 0 18669 ROOT
1 > 19866 10338
2 > 25545 10340
3 < 18669* 10339
3 < 8538 12898
18721 1 2 0 18721 ROOT
1 < 3067 6377
18895 1 2 0 18895 ROOT
1 < 7957 8872
18908 1 2 0 18908 ROOT
1 > 25531 13413
18970 10 5 0 18970 ROOT
1 < 2409 9807
2 > 3522 9804
3 > 18970* 9810
3 > 4286 9808
4 > 18970* 11115
4 < 2409* 9805
4 > 4288 11114
5 > 18970* 11116
5 < 2409* 9806
5 < 3522* 9809
18984 1 2 0 18984 ROOT
1 < 2476 6293
19015 10 5 0 19015 ROOT
1 > 19444 6633
2 > 25139 6635
3 < 19015* 6634
3 < 5212 6629
4 > 19015* 6627
4 > 19444* 6628
4 > 6628 6626
5 > 19015* 6630
5 > 19444* 6631
5 > 25139* 6632
19052 1 2 0 19052 ROOT
1 < 7713 289
19061 1 2 0 19061 ROOT
1 < 9094 1873
19145 1 2 0 19145 ROOT
1 > 23760 12719
1916 3 3 0 1916 ROOT
1 > 20953 6416
2 > 24463 6418
3 < 1916* 6417
19252 1 2 0 19252 ROOT
1 < 3195 6456
19257 3 3 0 19257 ROOT
1 > 22961 9462
2 < 7477 9461
3 > 19257* 9460
19314 15 6 0 19314 ROOT
1 > 19880 13363
2 > 25496 13371
3 < 19314* 13364
3 > 25543 13360
4 < 19314* 13365
4 < 19880* 13372
4 > 26019 13368
5 < 19314* 13366
5 < 19880* 13373
5 < 25496* 13361
5 > 26048 13370
6 < 19314* 13367
6 < 19880* 13374
6 < 25496* 13362
6 < 25543* 13369
194 1 2 0 194 ROOT
1 > 8628 7522
19466 3 3 0 19466 ROOT
1 > 24128 13695
2 < 7543 13697
3 > 19466* 13696
19473 1 2 0 19473 ROOT
1 > 23812 13340
19502 3 3 0 19502 ROOT
1 > 23970 13101
2 < 7718 13100
3 > 19502* 13099
19554 3 3 0 19554 ROOT
1 > 24878 7606
2 < 6159 7605
3 > 19554* 7604
1969 3 3 0 1969 ROOT
1 > 24141 13017
2 < 8472 13018
3 < 1969* 13016
1976 1 2 0 1976 ROOT
1 > 23672 14065
19906 1 2 0 19906 ROOT
1 > 26102 9469
19911 1 2 0 19911 ROOT
1 > 25487 7946
19932 12 7 0 19932 ROOT
1 > 19936 3994
2 < 2118 4090
2 > 25864 3996
3 < 19932* 3995
3 < 4199 3990
4 > 19932* 3988
4 > 19936* 3989
4 > 6443 3987
5 > 19932* 3991
5 > 19936* 3992
5 > 25864* 3993
2 > 26132 3997
19941 1 2 0 19941 ROOT
1 < 6079 9479
2004 1 2 0 2004 ROOT
1 > 21191 900
20084 1 2 0 20084 ROOT
1 > 22311 11060
20150 3 3 0 20150 ROOT
1 > 22312 9946
2 > 25226 9948
3 < 20150* 9947
20216 3 3 0 20216 ROOT
1 < 2223 12050
2 > 4266 12049
3 > 20216* 12051
20309 3 3 0 20309 ROOT
1 < 7267 13033
2 > 7280 13032
3 > 20309* 13031
20320 1 2 0 20320 ROOT
1 < 4643 13929
20333 1 2 0 20333 ROOT
1 < 4262 13275
20433 3 3 0 20433 ROOT
1 < 5446 11939
2 > 5632 11938
3 > 20433* 11940
20707 1 2 0 20707 ROOT
1 > 24820 13375
20803 2 3 0 20803 ROOT
1 > 25231 9268
1 < 6356 12964
20914 3 3 0 20914 ROOT
1 < 6008 6038
2 > 9959 6037
3 > 20914* 6036
21018 1 2 0 21018 ROOT
1 < 5479 8725
21028 1 2 0 21028 ROOT
1 < 8146 7558
2117 1 2 0 2117 ROOT
1 > 6300 8692
2119 1 2 0 2119 ROOT
1 > 7637 2066
2120 1 2 0 2120 ROOT
1 > 8157 288
21206 2 3 0 21206 ROOT
1 > 23175 1940
2 > 25662 1837
21288 3 4 0 21288 ROOT
1 < 8557 6253
2 > 26191 6254
2 < 8308 6255
21303 1 2 0 21303 ROOT
1 < 734 12168
21515 4 4 0 21515 ROOT
1 > 21523 9322
2 < 7916 8070
3 > 21515* 8069
3 < 28 8068
21579 1 2 0 21579 ROOT
1 < 373 8982
21593 1 2 0 21593 ROOT
1 > 22325 9803
21623 1 2 0 21623 ROOT
1 > 22605 12034
21684 6 5 0 21684 ROOT
1 > 22719 9328
2 < 21821 5235
2 > 22720 5236
3 < 21684* 9329
2 > 24169 5237
3 < 21684* 9330
22021 1 2 0 22021 ROOT
1 < 8811 10312
22110 1 2 0 22110 ROOT
1 < 5231 11035
22378 1 2 0 22378 ROOT
1 < 2762 4741
22435 1 2 0 22435 ROOT
1 < 5406 13288
2248 1 2 0 2248 ROOT
1 > 8409 12903
22827 3 3 0 22827 ROOT
1 < 5256 13257
2 > 5257 13256
3 > 22827* 13258
22891 1 2 0 22891 ROOT
1 < 25 8058
2304 6 4 0 2304 ROOT
1 < 360 11887
2 > 7602 11888
3 < 2304* 11890
3 > 8307 11892
4 < 2304* 11891
4 < 360* 11889
23094 1 2 0 23094 ROOT
1 < 2561 13015
2339 1 2 0 2339 ROOT
1 > 24594 3965
23416 1 2 0 23416 ROOT
1 < 3074 7925
23465 1 2 0 23465 ROOT
1 < 598 4505
23480 1 2 0 23480 ROOT
1 > 23652 5173
23772 1 2 0 23772 ROOT
1 < 735 12948
23776 1 2 0 23776 ROOT
1 < 8708 460
23811 3 3 0 23811 ROOT
1 < 4038 13143
2 > 7058 13142
3 > 23811* 13144
23856 2 3 0 23856 ROOT
1 > 24451 5693
2 < 4252 1759
23881 1 2 0 23881 ROOT
1 < 5577 7611
24202 1 2 0 24202 ROOT
1 < 2624 7464
24214 1 2 0 24214 ROOT
1 < 4116 13349
24464 1 2 0 24464 ROOT
1 < 8336 9272
24504 1 2 0 24504 ROOT
1 < 8054 12033
24733 1 2 0 24733 ROOT
1 < 6776 13049
24957 3 3 0 24957 ROOT
1 < 4019 6240
2 > 5626 6239
3 > 24957* 6241
25062 1 2 0 25062 ROOT
1 < 8735 12072
25095 1 2 0 25095 ROOT
1 < 9130 13214
254 1 2 0 254 ROOT
1 > 7572 9945
25492 9 6 0 25492 ROOT
1 > 25511 13407
2 < 8512 13406
3 > 25492* 13405
3 > 9715 13404
4 > 25492* 11133
4 > 25511* 11134
4 < 4034 11130
5 > 9717 11131
6 < 9715* 11132
25510 1 2 0 25510 ROOT
1 < 3279 9327
2557 1 2 0 2557 ROOT
1 > 4272 9656
25676 3 3 0 25676 ROOT
1 < 350 3528
2 > 951 3527
3 > 25676* 3529
2569 1 2 0 2569 ROOT
1 > 5546 1820
25853 1 2 0 25853 ROOT
1 < 8404 8057
26022 3 3 0 26022 ROOT
1 < 4021 8577
2 > 4826 8576
3 > 26022* 8575
294 1 2 0 294 ROOT
1 > 8626 4086
2981 1 2 0 2981 ROOT
1 > 4427 9683
3206 2 3 0 3206 ROOT
1 > 6535 7976
1 > 6579 7977
3844 1 2 0 3844 ROOT
1 < 82 9542
410 1 2 0 410 ROOT
1 > 4366 13307
4254 1 2 0 4254 ROOT
1 > 9337 2681
4954 1 2 0 4954 ROOT
1 > 4955 9567
5083 3 3 0 5083 ROOT
1 > 5084 3494
2 > 8711 3496
3 < 5083* 3495
5137 1 2 0 5137 ROOT
1 > 6884 9209
5261 1 2 0 5261 ROOT
1 > 6282 13379
5409 1 2 0 5409 ROOT
1 > 8623 9568
5486 1 2 0 5486 ROOT
1 > 8366 13376
5490 1 2 0 5490 ROOT
1 > 8474 14046
5492 1 2 0 5492 ROOT
1 > 5853 13722
6072 1 2 0 6072 ROOT
1 > 8887 914
6161 1 2 0 6161 ROOT
1 > 7055 8578
6229 2 3 0 6229 ROOT
1 > 6423 7947
1 > 7647 7948
6446 1 2 0 6446 ROOT
1 > 8036 9161
6669 1 2 0 6669 ROOT
1 > 9865 9691
6744 1 2 0 6744 ROOT
1 > 9595 4285
7534 1 2 0 7534 ROOT
1 > 7536 10346
7588 1 2 0 7588 ROOT
1 > 7590 9718
8534 1 2 0 8534 ROOT
1 > 8676 12343
8615 1 2 0 8615 ROOT
1 < 925 3541
14838 rows selected.
Elapsed: 00:00:10.56
Network Summaries
Network summary 1 - by network
Network #Links #Nodes Max Lev
---------- ------- ------- ----------
21593 2 2 1
21623 2 2 1
22021 2 2 1
22110 2 2 1
22378 2 2 1
22435 2 2 1
2248 2 2 1
22891 2 2 1
23094 2 2 1
2339 2 2 1
23416 2 2 1
23465 2 2 1
23480 2 2 1
23772 2 2 1
23776 2 2 1
23881 2 2 1
24202 2 2 1
24214 2 2 1
24464 2 2 1
24504 2 2 1
24733 2 2 1
25062 2 2 1
25095 2 2 1
254 2 2 1
25510 2 2 1
2557 2 2 1
2569 2 2 1
25853 2 2 1
294 2 2 1
2981 2 2 1
3844 2 2 1
410 2 2 1
4254 2 2 1
4954 2 2 1
5137 2 2 1
5261 2 2 1
5409 2 2 1
5486 2 2 1
5490 2 2 1
5492 2 2 1
6072 2 2 1
6161 2 2 1
6446 2 2 1
6669 2 2 1
6744 2 2 1
7534 2 2 1
7588 2 2 1
8534 2 2 1
8615 2 2 1
15208 2 2 1
15218 2 2 1
15249 2 2 1
15374 2 2 1
15387 2 2 1
15401 2 2 1
15423 2 2 1
15572 2 2 1
15609 2 2 1
15688 2 2 1
15712 2 2 1
15824 2 2 1
1589 2 2 1
15962 2 2 1
16015 2 2 1
16281 2 2 1
16312 2 2 1
16338 2 2 1
16470 2 2 1
16484 2 2 1
16622 2 2 1
16643 2 2 1
16922 2 2 1
1695 2 2 1
17470 2 2 1
17471 2 2 1
17503 2 2 1
17690 2 2 1
17951 2 2 1
17992 2 2 1
18098 2 2 1
18156 2 2 1
18183 2 2 1
18194 2 2 1
1836 2 2 1
18388 2 2 1
18417 2 2 1
18581 2 2 1
18721 2 2 1
18895 2 2 1
18908 2 2 1
18984 2 2 1
19052 2 2 1
19061 2 2 1
19145 2 2 1
19252 2 2 1
194 2 2 1
19473 2 2 1
1976 2 2 1
19906 2 2 1
19911 2 2 1
19941 2 2 1
2004 2 2 1
20084 2 2 1
20320 2 2 1
20333 2 2 1
20707 2 2 1
21018 2 2 1
21028 2 2 1
2117 2 2 1
2119 2 2 1
2120 2 2 1
21303 2 2 1
21579 2 2 1
10002 2 2 1
1010 2 2 1
10133 2 2 1
10148 2 2 1
10356 2 2 1
10382 2 2 1
10407 2 2 1
10433 2 2 1
1050 2 2 1
10517 2 2 1
10522 2 2 1
10559 2 2 1
10602 2 2 1
10638 2 2 1
10676 2 2 1
10897 2 2 1
1107 2 2 1
11215 2 2 1
11280 2 2 1
11411 2 2 1
11459 2 2 1
11462 2 2 1
11467 2 2 1
11579 2 2 1
11623 2 2 1
11641 2 2 1
11642 2 2 1
11718 2 2 1
11828 2 2 1
1187 2 2 1
11911 2 2 1
1194 2 2 1
11971 2 2 1
11991 2 2 1
12041 2 2 1
12050 2 2 1
12161 2 2 1
12248 2 2 1
12473 2 2 1
12504 2 2 1
12554 2 2 1
12751 2 2 1
12863 2 2 1
13022 2 2 1
13413 2 2 1
1344 2 2 1
1346 2 2 1
13621 2 2 1
13675 2 2 1
13717 2 2 1
1376 2 2 1
14 2 2 1
14130 2 2 1
14131 2 2 1
14132 2 2 1
14182 2 2 1
14338 2 2 1
14358 2 2 1
14763 2 2 1
14771 2 2 1
1490 2 2 1
14990 2 2 1
15181 2 2 1
15188 2 2 1
10115 3 3 1
1013 3 3 2
10317 3 3 1
10432 3 3 1
10513 3 3 1
1092 3 3 1
11216 3 3 2
12252 3 3 2
12256 3 3 1
12290 3 3 1
12617 3 3 2
12676 3 3 2
12703 3 3 1
12704 3 3 2
12798 3 3 2
12940 3 3 2
13485 3 3 2
14339 3 3 2
14842 3 3 2
14894 3 3 1
15259 3 3 2
1551 3 3 2
15681 3 3 1
15706 3 3 1
16523 3 3 2
16609 3 3 2
16957 3 3 2
18003 3 3 1
18171 3 3 1
20803 3 3 1
21206 3 3 2
23856 3 3 2
3206 3 3 1
6229 3 3 1
10178 4 3 3
10180 4 3 3
10252 4 3 3
1051 4 3 3
10818 4 3 3
10872 4 3 3
10936 4 4 1
11054 4 3 3
11120 4 4 1
11196 4 4 2
11197 4 3 3
11285 4 3 3
11465 4 3 3
11566 4 3 3
11893 4 3 3
11965 4 4 2
11969 4 3 3
12192 4 3 3
12307 4 3 3
12320 4 3 3
12338 4 3 3
12616 4 3 3
13012 4 3 3
13167 4 3 3
13202 4 4 3
13415 4 3 3
13486 4 3 3
13677 4 3 3
14560 4 3 3
14845 4 3 3
14868 4 3 3
15358 4 3 3
15415 4 4 2
15642 4 3 3
15847 4 3 3
16124 4 3 3
16129 4 3 3
1621 4 3 3
16358 4 3 3
16802 4 3 3
16892 4 3 3
16971 4 3 3
17179 4 3 3
17276 4 3 3
17291 4 3 3
17346 4 3 3
17461 4 3 3
17468 4 3 3
17865 4 4 2
1798 4 3 3
1821 4 3 3
18279 4 3 3
18544 4 3 3
18596 4 3 3
1916 4 3 3
19257 4 3 3
19466 4 3 3
19502 4 3 3
19554 4 3 3
1969 4 3 3
20150 4 3 3
20216 4 3 3
20309 4 3 3
20433 4 3 3
20914 4 3 3
21288 4 4 2
22827 4 3 3
23811 4 3 3
24957 4 3 3
25676 4 3 3
26022 4 3 3
5083 4 3 3
13031 5 4 3
12801 5 4 3
18669 5 4 3
14543 5 4 3
11427 5 4 4
10682 5 4 3
10679 5 4 3
15583 5 4 3
10637 5 4 3
21515 5 4 3
13357 5 4 3
12113 5 4 4
13932 5 4 4
14159 5 4 3
10154 6 4 4
11842 6 5 4
10906 6 6 2
15248 6 5 3
10355 6 6 2
11418 6 5 4
11279 6 5 3
11622 6 5 3
12689 7 4 4
11561 7 6 4
1154 7 5 5
11028 7 4 4
10672 7 4 4
10564 7 5 3
10341 7 4 4
2304 7 4 4
21684 7 5 3
15668 7 4 4
14353 7 5 4
13802 7 4 4
15396 8 5 4
11539 8 5 4
12046 8 8 3
10904 8 7 4
11879 8 6 5
12387 8 6 4
17280 8 5 4
17178 9 7 3
16620 9 6 5
16109 10 6 6
14770 10 7 4
25492 10 6 6
10884 11 7 6
11593 11 10 5
11662 11 5 5
15182 11 5 5
17782 11 5 5
18970 11 5 5
19015 11 5 5
1383 12 6 6
10792 12 7 6
10056 12 6 5
19932 13 7 5
11616 13 9 5
11009 13 8 5
12414 14 8 6
13325 15 8 7
10338 15 7 6
19314 16 6 6
12034 16 6 6
18034 19 8 6
11823 20 9 7
12042 21 12 10
12213 22 7 7
10163 25 8 8
10677 30 14 11
1000 13423 4158 1146
354 rows selected.
Elapsed: 00:00:01.75
Network summary 2 - grouped by numbers of nodes
#Nodes #Networks
------- ---------
2 177
3 98
4 30
5 17
6 12
7 8
8 6
9 2
10 1
12 1
14 1
4158 1
12 rows selected.
Elapsed: 00:00:01.44
The results show that the data set contains 354 connected networks, with one much larger than the rest, having 4158 nodes. This (more or less) matches with the results we got from source 3466. Actually, we should get one fewer record back than the number of nodes in the network, but as in the earlier article the SQL returns the source node in one record - we can easily fix this, but it’s not worthwhile my redoing all the results, so I leave it as is.
As another check, we can run against the second largest network, using 10677 as the source, which should give 14 records. Here is the result for SP_GTTRSF_Q, LEVMAX=10.
NODE LEV MAXLEV INTNOD INTMAX PATH
------------------------------ ---- ------- ------- ------- --------------------------------------------------------------------------------
309 1 2 1 2 309
9591 1 2 1 2 9591
..2136 2 2 2 2 9591,2136
..2186 2 2 2 2 9591,2186
..6012 2 2 2 2 9591,6012
..11030 2 2 2 2 9591,11030
..13704 2 2 2 2 9591,13704
..17453 2 2 2 2 9591,17453
..23946 2 2 2 2 9591,23946
..25611 2 2 2 2 9591,25611
17015 1 2 1 2 17015
..10677 2 2 2 2 9591,10677
..20560 2 2 2 2 309,20560
..21314 2 2 2 2 17015,21314
14 rows selected.
This is consistent with the network output with source node appearing once. The network output (usually I indent the records by level, but the level is very high in some networks here) is:
Network #Links #Nodes Lev Node Link
---------- ------- ------- ------ ---------- ----------
10677 29 14 0 10677 ROOT
1 > 17015 9130
2 > 20560 7465
3 < 309 7253
4 > 10677* 7250
4 > 17015* 7251
4 > 17453 7252
5 < 11030 10700
6 > 23946 10701
7 < 17453* 4282
7 > 25611 10703
8 < 11030* 10702
8 < 17453* 4283
8 < 6012 8987
9 > 11030* 8984
9 > 17453* 8985
9 > 23946* 8986
9 > 9591 8983
10 > 10677* 4275
10 > 11030* 4276
10 > 13704 4277
10 > 17015* 4278
10 > 17453* 4279
10 < 2136 4273
11 > 17453* 4274
10 < 2186 14089
10 > 23946* 4280
10 > 25611* 4281
10 < 309* 7249
2 > 21314 7466
Results: Friendship network of Brightkite users
Friendship network of Brightkite users
Brightkite was once a location-based social networking service provider where users shared their locations by checking-in. The friendship network was collected using their public API, and consists of 58,228 nodes and 214,078 edges. The network is originally directed but we have constructed a network with undirected edges when there is a friendship in both ways.
The data set comes with the reverse arcs already present, making a total of 428,156 arcs.
I took the first node in the first line in the data set file as the initial root node, 0, and tested only the method SP_GTTRSF_I/Q for values of LEVMAX of 5, 10. The complete results, including execution plans are in the attached file.
The exact solution has 56,739 nodes reached from the source node 0, with a maximum level of 10. The output is a bit large to embed, so attaching it in file, but here are the last few lines of the exact solution:
122 1 10 1 13 122
..0 2 10 2 13 99,0
..6534 2 10 2 13 122,6534
....15726 3 10 3 13 40,647,15726
......42871 4 10 4 13 69,4994,12608,42871
......45149 4 10 4 13 40,2886,15714,45149
......45850 4 10 4 13 122,6534,15726,45850
......45851 4 10 4 13 40,2886,22440,45851
......45852 4 10 4 13 122,6534,15726,45852
......45853 4 10 4 13 40,2886,26635,45853
......45854 4 10 4 13 36,2625,15736,45854
......45855 4 10 4 13 122,6534,15726,45855
......45856 4 10 4 13 122,6534,15726,45856
....15744 3 10 3 13 40,647,15744
....34944 3 10 3 13 122,6534,34944
....34945 3 10 3 13 122,6534,34945
....34946 3 10 3 13 122,6534,34946
56739 rows selected.
Elapsed: 00:01:32.49
In summary, as shown in the embedded Excel file, the exact solution is found in a total of 105 seconds and 344 seconds (based on Xplan timings) for LEVMAX=5 and 10 respectively.
<width=”100%” src=”https://onedrive.live.com/embed?cid=95EC670EA6AF8ED1&resid=95ec670ea6af8ed1%2179873&authkey=AGIzbHO2Ok3HoBk&em=2” width=”750” height=”300” frameborder=”0” scrolling=”no”></width=”100%”>
I ran my network analysis program on this network too, and here is the final grouped results, showing consistency with the largest connected network of 56,739 nodes.
Network summary 2 - grouped by numbers of nodes
#Nodes #Networks
------- ---------
2 362
3 103
4 40
5 21
6 9
7 3
8 2
9 1
10 2
11 2
49 1
56739 1
12 rows selected.
Elapsed: 00:00:24.17
We can do a further test by using a source from a smaller network. 51944 is a root of the network of size 49 nodes (as the full output shows). Here is the result of sourcing from that, again consistent witht he network analysis program that uses a completely diffferent algorithm:
NODE LEV MAXLEV INTNOD INTMAX PATH
------------------------------ ---- ------- ------- ------- --------------------------------------------------------------------------------
57077 1 7 1 9 57077
..51944 2 7 2 9 57077,51944
..57969 2 7 2 9 57077,57969
....58151 3 7 3 9 57077,57969,58151
......58195 4 7 4 9 57077,57969,58151,58195
........58218 5 7 5 9 57077,57969,58151,58195,58218
......58196 4 7 4 9 57077,57969,58151,58196
......58197 4 7 4 9 57077,57969,58151,58197
......58198 4 7 4 9 57077,57969,58151,58198
......58199 4 7 4 9 57077,57969,58151,58199
......58201 4 7 4 9 57077,57969,58151,58201
......58202 4 7 4 9 57077,57969,58151,58202
......58203 4 7 4 9 57077,57969,58151,58203
....58152 3 7 3 9 57077,57969,58152
......58205 4 7 4 9 57077,57969,58152,58205
........58219 5 7 5 9 57077,57969,58152,58205,58219
..........58224 6 7 6 9 57077,57969,58152,58205,58219,58224
........58220 5 7 5 9 57077,57969,58152,58205,58220
..........58226 6 7 8 9 57077,57969,58152,58205,58220,58226
............58227 7 7 8 9 57077,57969,58152,58205,58220,58225,58227
..........58225 6 7 9 9 57077,57969,58152,58205,58220,58225
........58221 5 7 5 9 57077,57969,58152,58205,58221
......58207 4 7 4 9 57077,57969,58152,58207
....58153 3 7 3 9 57077,57969,58153
....58154 3 7 3 9 57077,57969,58154
......58208 4 7 4 9 57077,57969,58154,58208
......58209 4 7 4 9 57077,57969,58154,58209
....58156 3 7 3 9 57077,57969,58156
....58159 3 7 3 9 57077,57969,58159
......58200 4 7 4 9 57077,57969,58159,58200
....58160 3 7 3 9 57077,57969,58160
......58210 4 7 4 9 57077,57969,58160,58210
........58222 5 7 5 9 57077,57969,58160,58210,58222
......58211 4 7 4 9 57077,57969,58160,58211
......58212 4 7 4 9 57077,57969,58160,58212
........58223 5 7 5 9 57077,57969,58160,58212,58223
....58161 3 7 3 9 57077,57969,58161
......58204 4 7 4 9 57077,57969,58161,58204
......58206 4 7 4 9 57077,57969,58161,58206
..57970 2 7 2 9 57077,57970
....58155 3 7 3 9 57077,57970,58155
....58157 3 7 3 9 57077,57970,58157
....58158 3 7 3 9 57077,57970,58158
..57971 2 7 2 9 57077,57971
..57972 2 7 2 9 57077,57972
....58162 3 7 3 9 57077,57972,58162
..57973 2 7 2 9 57077,57973
..57974 2 7 2 9 57077,57974
....58163 3 7 3 9 57077,57974,58163
49 rows selected.
Elapsed: 00:00:00.21